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The classical problem of the oscillations of an elastic rectangular 

parallelepiped has been solved only for certain particular boundary con- 

ditions [ 1 I. There is no solution, for example, for a parallelepiped 

the sides of which are rigidly restrained against displacement. It will 

be shown that the asymptotic method previously derived for dynamic prob- 

lems in the theory of plates and shells [2,3 1 enables us also to find a 

solution for certain other cases. As an example we shall consider the 

plane motion of a parallelepiped. The significance of Poisson’s ratio v 

will be illustrated, and it will be shown that for v = l/2 the asymptotic 

method enables us to find all the frequencies and modes of oscillations 

which are related to distortion waves; for oscillations related to ex- 

pansion waves the dynamic edge effect is always degenerate. 

1. Let us consider the problem of the natural plane oscillations of an 

elastic homogeneous isotropic rectangular parallelepiped. The frequencies 

and modes of oscillations are defined as the characteristic values and 

characteristic functions of the boundary problem described by the set of 

equations 

and the corresponding homogeneous boundary conditions. Here ul(xl, x,), 

U2(%1’ x2) are the components of the displacement vector, x and p are 

Lame’s coefficients, p is the density, o the frequency and A the two- 

dimensional Laplace operator. It can easily be seen that for a Particular 

choice of constants cl and c2 the set of equations (1.1) has a solution 

of the form 
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u1 = cl sin kl (q - El) cos IQ (x2 - E2), u2 = c2 cos kI (xl - E1) sin k2 (3~~ - j,) (1.2) 

where the constants k, and k2 are the wave numbers and 61 and tz 
arbitrary phases. The characteristic equation is of the form 

are 

$2 -t_ ki’ I 

kzk1 Q “p k22 1 = 0 

Its roots are Cl1 = 0 and 52,= 
to the frequencies of the natural 

- ( k12 + k22). These roots correspond 
oscillations 

and the eigenvectors cl = k,, c2 = - k, and cl = k,, c2 = k,. If we put 

kl = nz,n / aI, k2 = mpn ;i a2 (q, HZ* = 1, 2, . ), i1 = ;2 = 0 

solution (1.2) satisfies the boundary conditions 

where a1 and a2 are the lengths of the edges of the parallelepiped. This 
solution will be used later to give an approximate solution, with the 
aid of the asymptotic method developed in [ 2,3 I, for those cases of 
homogeneous boundary conditions which are not satisfied by (1.2) for any 
choice of the wave numbers k, and k, and the phases 4, and t,. The 
reasoning behind the method will not be dealt with here. 

2. We shall treat the solution (1.2) as a “generating” solution which 
is valid within some asymptotic error only for an internal region. For 
the time being we can then consider the parameters kl, k2 (the wave 
numbers) and El, 5, (the limiting phases) as arbitrary quantities. The 
problem will be solved if for a frequency o given by (1.3) we are able 
to find particular solutions to the set of equations (1.1) which have 
the properties of the edge effect, and if their number is sufficient to 
satisfy all the boundary conditions on every face. Let us consider, for 
example, the edge ~1 = 0. 

We shall try to find a solution which has the properties of the edge 
effect at this edge in the form 

After substituting Expressions (2.1) in (1.1) we find that the func- 
tions Ul(zl) and U,(x,l must satisfy the equations 
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The corresponding characteristic equation Will be 

/ o-r2-& 
I 

($ + jil?) --- kg 

A (r, Q)= / / : , / (“,:? 

I 
litr Q _I_ g_- h ; ~ ($ + kl?) ~ 

Suppose that fi = 0. Then, after expanding the determinant, we find 

that 

The fact that the equation h (r, 0) = 0 has roots ‘1 g = * ikl is a 

result of the “generating” solution being taken in the Porm (1.2). The 

two other roots will be rS 4 = f r,,, where * 

rcl? = - 
(1. + p) h.22 - pk,” 

i, + 2y I” i 

If reg > 0 one of the roots of Equation (2.3) will be negative. Then, 

for the edge ~1 = 0, we can find a solution which contains as many con- 

stants as are necessary to satisfy the boundary conditions, and which 

approximates to the “generating” solution (1.2) on approaching the in- 

terior of the region. Consequently, the asymptotic method is applicable 

if the wave numbers kl and k, satisfy the inequalities 

Whereas the solution (1.2) satisfies the boundary conditions on a 

pair of opposite faces, the inequalities (2.5) do not lead to a corre- 

sponding result. 

Let us consider now the solution corresponding to the frequency w2. 

Putting Sz = fit, = - ( k12 + k22) in Equation (2.3) and rearranging, we find 

that 
i, -I- Z!IL 

5 (,,, 0?) L A( 
I’ 

($ _,~ I,,‘.) L];,LK L,’ 1 0 

This equation has only purely imaginary roots and consequently the 

dynamic edge effect which corresponds to the series of frequencies og is 

always degenerate. Physically this means that the effect of the boundary 

conditions is significant for any point within the parallelepiped. This 

is not an unexpected result, if we consider that the frequencies o2 
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correspond to oscillations connected asymptotically with expansion waves. 

The problem of the oscillations of a prismatic elastic rod leads to a 
similar result, when account is taken of shear deformation and rotational 
inertia; for the second (higher) series of frequencies the dynamic edge 
effect is always degenerate. while for the first series of frequencies 
the asymptotic method gives an effective solution [4 1. In this connec- 
tion it is of interest to consider the following interpretation of the 
conditions (2.5). If we express h and p in terms of the elasticity 
modulus E and Poisson’s ratio v, conditions (2.5) become 

h-1” - (1 - 2Y) Iin' > 0, Iii’ - (I - 21.) lil’ > 0 (2.6) 

For v = l/2 (the volume of the deformed parallelepiped remains con- 
stant during the oscillations) the dynamic edge effect is not degenerate 
for any values of kl and k2. Conversely, when v = 0 the edge effect is 
always degenerate. 

3. As an example let us consider the plane oscillations of a parallele- 
piped with the conditions that UI = u2 = 0 on the sides XI = 0, XI = aI, 
z2 = 0 and x2 = a*. We first find a solution of the type (2.1) for 
CI = k,, c2 = - kl, which satisfies the boundary conditions on the side 
XI = 0. After solving the set of equations (2.2) we find that 

where r,, is a positive number given by Formula (2.4) and C is a constant. 
The particular solution which increases with increase in XI is discarded. 
The first terms in Expressions (3.1) correspond to the “generating” solu- 
tion (1.2). the second to the dynamic edge effect. 

If we now subject the solution (3.1) to the boundary conditions 
UI(O) = Ug(O) = 0, we obtain for the limiting phase CI 

tan kljl = ‘$ (3.2) 

A similar relation can easily be found for the solution satisfying 
the conditions on the opposite side. These solutions do not coincide, 
but to the accuracy of a quantity of the order 

they can be assumed to coincide in the limiting phases. If we equate 
these phases we obtain a “matching condition”, which relates the wave 
numbers k, and kq. The second solution can be found in a similar way by 
considering solutions which take their origins from the sides x2 = 0 and 
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x2 = a2. From the resulting set of equations the wave numbers kl and k, 

can easily be determined, and the frequencies of the natural oscilla- 
tions can then be found from Formula (1.3). The forms of the oscilla- 
tions can be found approximately for all points in the parallelepiped, 

Fig. 1. 

with the exception of regions immediately adjacent to its edges. 

In order to find the “matching conditions”, in practice it is simplest 
to start by considering the properties of symmetry. The forms of the 
oscillations in this case fall into four categories according to the 
nature of the symmetry. Let us consider a motion which is symmetrical 
along the xl-axis. For this type of motion U1(1/2al) = U,‘(l/2a,= 0. To 
the accuracy of a quantity t given by Formula (3.3) these conditions can 
be replaced by the single condition sin k1(1/2nl - tl) = 0. Thus, by 
making use of (3.2) we obtain the equation 

tan; klal = $f$ (3.4) 

For motions which are antisymmetric along the xl-axis we have the con- 

ditions 111’(1/2al) = U,(1/2al) = 0. These conditions will be satisfied 
to the accuracy of e: if we set cos k, (1/2al - El) = 0. Thus 

Equations (3.4) and (3.5) can be combined into the single equation 
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which is derived by making use of Formula (2.4). For the function tan-’ 
its principal values are taken. The second equation is derived from (3.6) 
by cyclic permutation of indices: 

It can be seen from Equations (3.6) and (3.7) that the wave numbers 
and frequencies in regions where there is no degeneration of the edge 
effect have the same asymptotic behavior as in the Problem of oscilla- 
tions of a membrane 15 1: 

ha2 I x = ma + 0 (1) (m,, m2 = 1, 2, . . .) 

In contrast to the asymptotic methods of Courant-Weyl [5 I, Equations 
(3.6) and (3.7) enable us to find the wave numbers to the accuracy of 6. 

We note that on the boundary of the region of degeneration kg2 - (1 - 
al+2 = 0 Equation (3.6) has an exact solution k,a,/n = ml, and on the 
other boundary Equation (3.7) has the solution k,a,/n = IRK. With kl 

fixed, as k, -B m, k,a,/n + A~; similarly with k2 fixed, as k, + m, 

k,a,,hr + w2” If B1 = 8t2 = at, a1 = a2 = a the set of equations (3.6) snd 
(3.7) has a solution k, = k, = k, where 

Y 
Ka=2tan-1 l--y ! > 1% 

-!-mar; 

(n&=1, 2,...) 

In particular, if Y = l/2. then 

kajx = m -j- “jz, 

In this way it is not difficult to imagine a diagram of the distribu- 
tion of the roots of (3.6) and (3.7) in the Plane ml* = k,a,/ 8, 

a2* = k2a2/n. Such a diagram for the case of v = l/2 is shown in Fig. 1. 
The roots of the set of equations are defined as the coordinates of the 
points of intersection of the thick continuous lines (their values can 
be found more precisely by iteration). The thin continuous lines corre- 
spond to the case of boundary conditions for which the generating solu- 
tion (1.2) is the exact solution. The lines along which the a priori 

error given by Formula (3.8) has the values (0.1, 0.05, 0.01 and 0.001) 
are shown dotted. Figure 2 shows a similar diagram for the case of 
,V = 0.35, a1 = a2. The region of degeneration, within which the asymp- 
totic method is inapplicable, is shown hatched. The error of this method 
rapidly diminishes with increase in distance from the edge of the region 
of degeneration. 

4. In the foregoing we have considered only the case of plane de- 
formation. In order to apply the results to the ease of a state of Plane 
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stress (a thin plate performing oscillations in its own plane), we 
Simply replace h by A* = vE/(l - v2 1 in Equst ions (1.1) and in sub- 
sequent formulas containing x and p. For example, instead of the condi- 
tions (2.6) for the applicability of the method, we have the conditions 
k&l + v) - k,2(1 - v) > 0, kz2(I + v) - k12(l - v) > 0, etc. 

Fig. 2. 

In the case of three-dimensional oscillations the “generating” solu- 
tion corresponds to three series of frequencies: two series related to 
distortion w8ves, and one related to expansion waves. For the latter the 
dynamic edge effect is always degenerate. For the first two series, in- 
stesd of conditions (2.6) we have the condition k12+ k22- (1 - Zv)kg’> 0 

and a further two conditions derived by cyclic permut8tion of indices. 
For IJ = l/2 the edge effect is not degenerate for sny combination of 
k,, k, and k,. 
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