THE NATURAL OSCILLATIONS OF A RECTANGULAR ELASTIC PARALLELEPIPED

(O SOBSTVENNYKH KOLEBANIIAKH PRIAMOUGOL' NOGO UPRUGOGO PARALLELEPIPEDA)

PMM Vol.25, No.1, 1961, pp. 155-158
V. V. BOLOTIN
(Moscow)
(Received November 14, 1960)

The classical problem of the oscillations of an elastic rectangular parallelepiped has been solved only for certain particular boundary conditions [1]. There is no solution, for example, for a parallelepiped the sides of which are rigidly restrained against displacement. It will be shown that the asymptotic method previously derived for dynamic problems in the theory of plates and shells [2,3] enables us also to find a solution for certain other cases. As an example we shall consider the plane motion of a parallelepiped. The significance of Poisson's ratio ν will be illustrated, and it will be shown that for $\nu=1 / 2$ the asymptotic method enables us to find all the frequencies and modes of oscillations which are related to distortion waves; for oscillations related to expansion waves the dynamic edge effect is always degenerate.

1. Let us consider the problem of the natural plane oscillations of an elastic homogeneous isotropic rectangular parallelepiped. The frequencies and modes of oscillations are defined as the characteristic values and characteristic functions of the boundary problem described by the set of equations

$$
\begin{align*}
& \mu \Delta u_{1}+(\lambda+\mu)\left(\frac{\partial^{2} u_{1}}{\partial x_{1}^{2}} \div \frac{\partial^{2} u_{2}}{\partial x_{1} \partial x_{2}}\right)+\rho \omega^{2} u_{1}=0 \\
& \mu \triangle u_{2} \div(\hat{\lambda}+\mu)\left(\frac{\partial^{2} u_{1}}{\partial x_{1} \partial x_{2}}+\frac{\partial^{2} u_{2}}{\partial x_{2}^{2}}\right)+\rho \omega^{2} u_{2}=0 \tag{1.1}
\end{align*}
$$

and the corresponding homogeneous boundary conditions. Herc $u_{1}\left(x_{1}, x_{2}\right)$, $u_{2}\left(x_{1}, x_{2}\right)$ are the components of the displacement vector, λ and μ are Lame's coefficients, ρ is the density, ω the frequency and Δ the twodimensional Laplace operator. It can easily be seen that for a particular choice of constants c_{1} and c_{2} the set of equations (1.1) has a solution of the form

$$
\begin{equation*}
u_{1}=c_{1} \sin k_{1}\left(x_{1}-\xi_{1}\right) \cos k_{2}\left(x_{2}-\xi_{2}\right), \quad u_{2}=c_{2} \cos k_{1}\left(x_{1}-\xi_{1}\right) \sin k_{2}\left(x_{2}-\xi_{2}\right) \tag{1.2}
\end{equation*}
$$

where the constants k_{1} and k_{2} are the wave numbers and ξ_{1} and ξ_{2} are arbitrary phases. The characteristic equation is of the form

$$
\left|\begin{array}{cc}
\Omega+k_{1}^{2} & k_{1} k_{2} \\
k_{2} k_{1} & \Omega+k_{2}^{2}
\end{array}\right|=0 \quad\left(\Omega=\frac{\mu\left(k_{1}^{2}+k_{2}^{2}\right)-\rho \omega^{2^{2}}}{\lambda+\mu}\right)
$$

Its roots are $\Omega_{1}=0$ and $\Omega_{2}=-\left(k_{1}{ }^{2}+k_{2}{ }^{2}\right)$. These roots correspond to the frequencies of the natural oscillations

$$
\begin{equation*}
\omega_{1}^{2}=\frac{\mu}{\rho}\left(k_{1}^{2}+k_{2}^{2}\right), \quad \omega_{2}^{2}=\frac{\lambda+2 \mu}{\rho}\left(k_{1}^{2}+k_{2}^{2}\right) \tag{1.3}
\end{equation*}
$$

and the eigenvectors $c_{1}=k_{2}, c_{2}=-k_{1}$ and $c_{1}=k_{1}, c_{2}=k_{2}$. If we put

$$
k_{1}=m_{1} \pi / a_{1}, \quad k_{2}=m_{2} \pi / a_{2} \quad\left(m_{1}, m_{2}=1,2, \ldots\right), \quad \xi_{1}=\xi_{2}=0
$$

solution (1.2) satisfies the boundary conditions

$$
u_{1}=\frac{\partial u_{2}}{\partial x_{1}}=0 \quad \text { for } x_{1}=0 \text { and } x_{1}=a_{1}, \quad \frac{\partial u_{1}}{\partial x_{2}}=u_{2}=0 \quad \text { for } \quad x_{2}=0 \quad \text { and } x_{2}=a_{2}
$$

where a_{1} and a_{2} are the lengths of the edges of the parallelepiped. This solution will be used later to give an approximate solution, with the aid of the asymptotic method developed in [2,3], for those cases of homogeneous boundary conditions which are not satisfied by (1.2) for any choice of the wave numbers k_{1} and k_{2} and the phases ξ_{1} and ξ_{2}. The reasoning behind the method will not be dealt with here.
2. We shall treat the solution (1.2) as a "generating" solution which is valid within some asymptotic error only for an internal region. For the time being we can then consider the parameters k_{1}, k_{2} (the wave numbers) and ξ_{1}, ξ_{2} (the limiting phases) as arbitrary quantities. The problem will be solved if for a frequency ω given by (1.3) we are able to find particular solutions to the set of equations (1.1) which have the properties of the edge effect, and if their number is sufficient to satisfy all the boundary conditions on every face. Let us consider, for example, the edge $x_{1}=0$.

We shall try to find a solution which has the properties of the edge effect at this edge in the form

$$
\begin{equation*}
u_{1}=c_{1} U_{1}\left(x_{1}\right) \cos h_{2}\left(x_{2}-\xi_{2}\right), \quad u_{2}=c_{2} U_{2}\left(x_{1}\right) \sin k_{2}\left(x_{2}-\check{\xi}_{2}\right) \tag{21}
\end{equation*}
$$

After substituting Expressions (2.1) in (1.1) we find that the functions $U_{1}\left(x_{1}\right)$ and $U_{2}\left(x_{1}\right)$ must satisfy the equations

$$
\begin{gather*}
\mu c_{1}\left(U_{1}^{\prime \prime}-k_{2}^{2} U_{1}\right)+(\lambda+\mu)\left(c_{1} U_{1}^{\prime \prime}+k_{2} c_{2} U_{2}^{\prime}\right)+\rho \omega^{2} c_{1} U_{1}=0 \\
\mu c_{2}\left(U_{2}^{\prime \prime}-k_{2}^{2} U_{2}\right)+(\lambda+\mu)\left(-k_{2} c_{1} U_{1}^{\prime}-k_{2}{ }^{2} c_{2} U_{2}\right)+\rho \omega^{2} c_{2} U_{3}=0
\end{gather*}
$$

The corresponding characteristic equation will be

$$
\Delta(r, \Omega)=\left|\begin{array}{cc}
\Omega-r^{2}-\frac{\mu}{\lambda+\mu}\left(r^{2} \div k_{1}^{2}\right) & -k_{2} r \\
k_{2} r & \Omega+k_{2}^{2}-\frac{\mu}{\lambda+\mu}\left(r^{2}+k_{1}^{2}\right)
\end{array}\right|=\cdots \quad \text { (2.3) }
$$

Suppose that $\Omega=0$. Then, after expanding the determinant, we find that

$$
\Delta(r, 0)=\left(\frac{\mu}{\lambda+\mu}\right)^{2}\left(r^{2}+k_{1}^{2}\right) \div \frac{\mu}{\lambda+\mu}\left(r^{2}+h_{1}^{2}\right)\left(r^{2}-h_{1}^{2}\right)=0
$$

The fact that the equation $\Delta(r, 0)=0$ has roots $r_{1,2}= \pm i k_{1}$ is a result of the "generating" solution being taken in the form (1.2). The two other roots will be $r_{3,4}= \pm r_{0}$, where

$$
\cdot r_{0}^{2}=\frac{(\lambda+\mu) k_{2}^{2}-\mu k_{1}^{2}}{\lambda+2 \mu}
$$

If $r_{0}{ }^{2}>0$ one of the roots of Equation (2.3) will be negative. Then, for the edge $x_{1}=0$, we can find a solution which contains as many constants as are necessary to satisfy the boundary conditions, and which approximates to the "generating" solution (1.2) on approaching the interior of the region. Consequently, the asymptotic method is applicable if the wave numbers k_{1} and k_{2} satisfy the inequalities

$$
(\lambda+\mu) k_{1}^{2}-\mu k_{2}^{2}>0 \quad(\lambda+\mu) k_{2}^{2}-\mu k_{1^{2}}^{2}>0 \quad \therefore \dot{\partial}
$$

Whereas the solution (1.2) satisfies the boundary conditions on a pair of opposite faces, the inequalities (2.5) do not lead to a corresponding result.

Let us consider now the solution corresponding to the frequency ω_{2}. Putting $\Omega=\Omega_{2}=-\left(k_{1}{ }^{2}+k_{2}{ }^{2}\right)$ in Equation (2.3) and rearranging, we find that

$$
\Delta\left(r, \Omega_{2}\right)=\frac{\hat{\lambda}+\underline{2}_{\mu} \mu}{\mu}\left(r^{2}-h_{3}^{2}\right)\left[{ }_{i}-\mu\left(r^{2}-h_{1}-1+h_{1}-h_{2}^{2} \mid \quad 1\right.\right.
$$

This equation has only purely imaginary roots and consequently the dynamic edge effect which corresponds to the series of frequencies ω_{2} is always degenerate. Physically this means that the effect of the boundary conditions is significant for any point within the parallelepiped. This is not an unexpected result, if we consider that the frequencies ω_{2}
correspond to oscillations connected asymptotically with expansion waves. The problem of the oscillations of a prismatic elastic rod leads to a similar result, when account is taken of shear deformation and rotational inertia; for the second (higher) series of frequencies the dynamic edge effect is always degenerate, while for the first series of frequencies the asymptotic method gives an effective solution [4]. In this connection it is of interest to consider the following interpretation of the conditions (2.5). If we express λ and μ in terms of the elasticity modulus E and Poisson's ratio ν, conditions (2.5) become

$$
\begin{equation*}
k_{1}^{2}-(1-2 v) k_{2_{2}^{2}}^{2}>0, \quad k_{2_{2}^{2}}^{2}-(1-2 v) k_{1}^{2}>0 \tag{2.6}
\end{equation*}
$$

For $\nu=1 / 2$ (the volume of the deformed parallelepiped remains constant during the oscillations) the dynamic edge effect is not degenerate for any values of k_{1} and k_{2}. Conversely, when $\nu=0$ the edge effect is always degenerate.
3. As an example let us consider the plane oscillations of a parallelepiped with the conditions that $u_{1}=u_{2}=0$ on the sides $x_{1}=0, x_{1}=a_{1}$, $z_{2}=0$ and $x_{2}=a_{2}$. We first find a solution of the type (2.1) for $c_{1}=k_{2}, c_{2}=-k_{1}$, which satisfies the boundary conditions on the side $x_{1}=0$. After solving the set of equations (2.2) we find that

$$
U_{1}=\sin k_{1}\left(x_{1}-\xi_{1}\right)+C \exp \left(-r_{0} x_{1}\right), \quad U_{2}=\cos k_{1}\left(x_{1}-\xi_{1}\right)-\frac{k_{2}^{2} C}{k_{1} r_{0}} \exp \left(-r_{4} r_{1}\right)(3.1)
$$

where r_{0} is a positive number given by Formula (2.4) and C is a constant. The particular solution which increases with increase in x_{1} is discarded. The first terms in Expressions (3.1) correspond to the "generating" solution (1.2), the second to the dynamic edge effect.

If we now subject the solution (3.1) to the boundary conditions $U_{1}(0)=U_{2}(0)=0$, we obtain for the limiting phase ξ_{1}

$$
\begin{equation*}
\tan k_{1} \xi_{1}=\frac{k_{1} r_{0}}{k_{2}^{2}} \tag{3.2}
\end{equation*}
$$

A similar relation can easily be found for the solution satisfying the conditions on the opposite side. These solutions do not coincide, but to the accuracy of a quantity of the order

$$
\begin{equation*}
\varepsilon \sim \exp \left(-\frac{1}{2} r_{0} a_{1}\right) \tag{3}
\end{equation*}
$$

they can be assumed to coincide in the limiting phases. If we equate these phases we obtain a "matching condition", which relates the wave numbers k_{1} and k_{2}. The second solution can be found in a similar way by considering solutions which take their origins from the sides $x_{2}=0$ and
$x_{2}=a_{2}$. From the resulting set of equations the wave numbers k_{1} and k_{2} can easily be determined, and the frequencies of the natural oscillations can then be found from Formula (1.3). The forms of the oscillations can be found approximately for all points in the parallelepiped,

Fig. 1.
with the exception of regions immediately adjacent to its edges.
In order to find the "matching conditions", in practice it is simplest to start by considering the properties of symmetry. The forms of the oscillations in this case fall into four categories according to the nature of the symmetry. Let us consider a motion which is symmetrical along the x_{1}-axis. For this type of motion $U_{1}\left(1 / 2 a_{1}\right)=U_{2}^{\prime}\left(1 / 2 a_{1}=0\right.$. To the accuracy of a quantity ϵ given by Formula (3.3) these conditions can be replaced by the single condition $\sin k_{1}\left(1 / 2 a_{1}-\xi_{1}\right)=0$. Thus, by making use of (3.2) we obtain the equation

$$
\begin{equation*}
\tan \frac{1}{2} k_{1} a_{1}=\frac{k_{1} r_{0}}{k_{2}^{2}} \tag{3.4}
\end{equation*}
$$

For motions which are antisymmetric along the x_{1}-axis we have the conditions $U_{1}^{\prime}\left(1 / 2 a_{1}\right)=U_{2}\left(1 / 2 a_{1}\right)=0$. These conditions will be satisfied to the accuracy of ϵ if we set $\cos k_{1}\left(1 / 2 a_{1}-\xi_{1}\right)=0$. Thus

$$
\begin{equation*}
\cot \frac{1}{2} k_{1} a_{1}=-\frac{k_{1} r_{0}}{k_{2}^{2}} \tag{35}
\end{equation*}
$$

Equations (3.4) and (3.5) can be combined into the single equation

$$
\begin{equation*}
k_{1} a_{1}=2 \tan ^{-1} \frac{k_{1}}{k_{2}^{2}}\left[\frac{k_{2}^{2}-(1-2 v) k_{1}^{2}}{2(1-v)}\right]^{1 / 2}+m_{1} \pi \quad\left(m_{1}=1,2, \ldots\right) \tag{3.6}
\end{equation*}
$$

which is derived by making use of Formula (2.4). For the function $\tan ^{-1}$ its principal values are taken. The second equation is derived from (3.6) by cyclic permutation of indices:

$$
\begin{equation*}
k_{2} a_{2}=2 \tan ^{-1} \frac{k_{2}}{k_{1}^{2}}\left[\frac{k_{1}^{2}-(1-2 v) k_{2}^{2}{ }^{2}}{2(1-v)}\right]^{1 / 2}+m_{2} \pi \quad\left(m_{2}=1,2, \ldots\right) \tag{3.7}
\end{equation*}
$$

It can be seen from Equations (3.6) and (3.7) that the wave numbers and frequencies in regions where there is no degeneration of the edge effect have the same asymptotic behavior as in the problem of oscillations of a membrane [5]:

$$
k_{1} a_{1} / \pi=m_{1}+O(1), \quad k_{2} a_{2} / \pi=m_{2}+O(1) \quad\left(m_{1}, m_{2}=1,2, \ldots\right)
$$

In contrast to the asymptotic methods of Courant-Weyl [5], Equations (3.6) and (3.7) enable us to find the wave numbers to the accuracy of ϵ. We note that on the boundary of the region of degeneration $k_{2}{ }^{2}-(1-$ $2 \nu) k_{1}{ }^{2}=0$ Equation (3.6) has an exact solution $k_{1} a_{1} / \pi=m_{1}$, and on the other boundary Equation (3.7) has the solution $k_{2} a_{2} / \pi=m_{2}$. With k_{1} fixed, as $k_{2} \rightarrow \infty, k_{1} a_{1} / \pi \rightarrow m_{1}$; similarly with k_{2} fixed, as $k_{1} \rightarrow \infty$, $k_{2} a_{2} / \pi \rightarrow m_{2}$. If $m_{1}=m_{2}=m, a_{1}=a_{2}=a$ the set of equations (3.6) and (3.7) has a solution $k_{1}=k_{2}=k$, where

$$
\begin{gathered}
k a=2 \tan ^{-1}\left(\frac{v}{1-v}\right)^{1 / 2}+m \pi \\
(m=1,2, \ldots)
\end{gathered}
$$

In particular, if $\nu=1 / 2$, then

$$
k a / \pi=m+1 / 2 .
$$

In this way it is not difficult to imagine a diagram of the distribution of the roots of (3.6) and (3.7) in the plane $n_{1} *=k_{1} a_{1} / \pi$, $m_{2}{ }^{*}=k_{2} c_{2} / \pi$. Such a diagram for the case of $\nu=1 / 2$ is shown in Fig. 1. The roots of the set of equations are defined as the coordinates of the points of intersection of the thick continuous lines (their values can be found more precisely by iteration). The thin continuous lines correspond to the case of boundary conditions for which the generating solution (1.2) is the exact solution. The lines along which the a priori error given by Formula (3.8) has the values ($0.1,0.05,0.01$ and 0.001) are shown dotted. Figure 2 shows a similar diagram for the case of $\nu=0.35, a_{1}=a_{2}$. The region of degeneration, within which the asymptotic method is inapplicable, is shown hatched. The error of this method rapidly diminishes with increase in distance from the edge of the region of degeneration.
4. In the foregoing we have considered only the case of plane deformation. In order to apply the results to the case of a state of plane
stress (a thin plate performing oscillations in its own plane), we simply replace λ by $\lambda^{*}=\nu E /\left(1-\nu^{2}\right)$ in Equations (1.1) and in subsequent formulas containing λ and μ. For example, instead of the conditions (2.6) for the applicability of the method, we have the conditions $k_{1}{ }^{2}(1+\nu)-k_{2}{ }^{2}(1-\nu)>0, k_{2}{ }^{2}(1+\nu)-k_{1}{ }^{2}(1-\nu)>0$, etc.

Fig. 2.
In the case of three-dimensional oscillations the "generating" solution corresponds to three series of frequencies; two series related to distortion waves, and one related to expansion waves. For the latter the dynamic edge effect is always degenerate. For the first two series, instead of conditions (2.6) we have the condition $k_{1}{ }^{2}+k_{2}{ }^{2}-(1-2 \nu) k_{3}{ }^{2}>0$ and a further two conditions derived by cyclic permutation of indices. For $\nu=1 / 2$ the edge effect is not degenerate for any combination of k_{1}, k_{2} and k_{3}.

BIBLIOGRAPHY

1. Sommerfeld, A., Mekhanika deformiruemyk sred (The Mechanics of Deformable Media). IIL, 1954.
2. Bolotin, V.V., Kraevoi effekt pri kolebanifakh uprugikh obolochek (The edge effect in the oscillations of elastic shells). PMM Vol. 24, No. 5, 1960.
3. Bolotin, V.V., Asimptoticheskii metod issledovaniia zadach o sobstvennykh znacheniiakh dlia priamougol'nykh oblastei (The asymptotic method of investigating the problem of characteristic values for rectangular areas). Lubilein. sb. akad. N.I. Muskhelishvili (Jubilee Collection in Honour of Acadenician N.I. Muskhelishvili). Izd-vo AN SSSR, 1961.
4. Kudriavtsev, E.P., Vliianie sdvigov i inertsii vrashcheniia na izgibnye kolebaniia uprugikh sterzhnei (The effect of shear and rotational inertia on bending oscillations in elastic rods). Izv. Akad. Nauk SSSR, OTN, Mekhanika i mashinostroenie No. 5, 1960.
5. Courant, R. and Hilbert, D., Metody matematicheskoi fiziki (Methods of Mathenatical Physics), Vol. 1. Gostekhizdat, 1951.
